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Abstract

In this article an experimental verification of the
step-wise control method containig an ill-posed
problem solution as developed in [12] is presented.
The controlled thermal system 1s considered to
be decomposed into two subsystems - a subsystem
which is easy to conirol by a feedback using mea-
surable outputs of the system and a subsystem with
a distributed state - usually a spatial temperature

distribution inside a heated material - which is in-
acessible to direct measurement.

the state is supposed to be described by a suitable
distributed parameter model with a boundary ez-
citation performed via the measurable system out-
put. The control task then consists of optimally
varying the measurable system output that governs
the boundary excitation of the distributed parame-
ter subsystem until it is calculated that the required
shape of the distributed state has been reached. In
the article optimal reference values for the system
output, which should be tracked by a controller, are
generated using a stepwise technigque for the inver-
ston of the distributed parameter model. The exper-
tmental results justifying the proposed method and
some numerical aspecis of the method are also dis-
cussed.

Keywords: Distributed parameter systems; in-
verse modelling; regularization; spline approzima-
tion; predictive control.

1. Introduction

Heating of solid materials is one of the most ener-
getically exhausting technological steps in heavy in-
dustry. Therefore the optimal heating is one of the
research targets in control theory. Unfortunately
the heating process is described by partial differen-
tial equations (distributed parameter system) and
therefore it is not easy to transfer the well work-
ing theory from finite dimensional systems (ordi-
nary differential eauations) to this area. Moreover,
most frequently the spatial temperature distribu-
tion inside the solid matherial during the heating
is not accessible to direct measurement. Therefore,
the problem is how to manipulate unmeasurable in-
ternal temperature distribution which can be only
modelled by solving the infinite dimensional model
equations. Although, recently a well develloped
theory of control for infinite dimensional systems
has been proposed, as was noted for example in
[4, 5] it is still a problem to realize such controllers
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numerically.

The main reason for the numerical difficulties in
the boundary control of thermal process inside a

heated solid material stems from the ill-possednes
of the model inversion which always is, in one way
or other, embedded within the control algorithm
[19].

In [12] the authors have proposed a control algo-
rithm which clearly identifies the ill-posed part and
splits the system into a pair of subsystems - a sub-
system with measurable outputs (surface - bound-
ary temperature of the heated object) which is easy
to control by a feedback and a subsequent subsys-
tem which is driven by the preceding subsystem
and whose distributed state is inaccessible to di-
rect measurement (inside temperature of heated ob-
ject). Control of this inside temperature is achieved
not by a feedback but by a maintaining of pre-
calculated temperature time profile at the bound-
ary of the object. The calculation of this bound-
ary temperature time development is exactly the
ill-posed part of the controller as was noted for ex-
ample in [6].

The aim of this article is to submit an experimental
verification of a method developed in [12] on labo-
ratory system simulating a boundary heating. The
method uses a predictive control system working
with the measurable output of the thermal system
and tracking a specified, optimally pre-calculated
reference signal for boundary control of the system
in order to obtain a required spatial temperature
profile in the heated object at a selected time in-
stants t,. For a given spatial temperature profile,
the reference signal for the system boundary con-
trol is obtained by inverting a distributed param-
eter model, which describes the dynamics of the
unmeasurable temperature distribution in the sec-
ond subsystem of the given thermal system. In the
method the inverse problem is converted to some
reqularization problem and is solved by a stepwise
technique. This technique seems to be suitable for
on-line control of thermal systems under a condi-
tion of stochastic disturbances acting on the con-
trolled systems. The dynamics of the first subsys-
tem is modelled by continuous-time convolutional
integrals with finite-support kernels. The input
and output signals of the subsystem are consid-
ered to be polynomial splines. The B-splines are
taken as base functions of these splines. The con-
trol synthesis is based on minimization of an in-
tegral continuous-time quadratic loss function, af-
ter the spline approximation is transformed to a
simple matrix quadratic form. To minimize this
form a quadratic programming is employed. The
allowed control input signal is then defined by a set
of suitably selected linear equality and inequality
constraints which act on the vector of the polyno-



mial coethicients ot this signal.

In the following parts of the article we briefly men-
tion the step-wise method developped in [12], inver-
sion task and the overall algorithm. Then, certain
discretization and numerical aspects of the method
are described in more detail. At the end, the ex-
perimental device and its model are described to-
gether with the experimental results justifying the
method. We conclude with some notes about pos-
sible work in future.

2. Step-wise method of optimal boundary
control

The laboratory device which we describe later in
more detail consists in a boundary heated metal bar
which 1s cooled by heat tranfer to the surrounding
air. Then the behaviour of the unmeasured tem-
perature field of the metal bar s(z,t) at the time
instant ¢ and the position z of the bar is described
by the parabolic partial differential equation:

25(:1? t) — a28—25(33 t)+bs(z,t) =0
ot 3 6;132 3 3 —
3,
s(z,t0) = so(x), (0, 1) = y(t), 8—;(L,t) =0
0<z<L, t>ty, a0
2 A,k
@ = c.p’ b= c.p (1)

where: L is the length of the bar; X is the ther-
mal conductivity coefficient; ¢ is the specific heat;
p is the specific mass of the bar and h is the heat-
transfer coefficient.

The Green’s function G(z,¢,t) for the above prob-
lem is:

Gle,61)= 73 exp (bt = Mat)on(2)pn(€) (2)

v . (241 :
where ¢,(z) = sin %:p = sin %CL‘ are eigen-

functions of the Sturm-TLiuville probfem for (1) with

_ (2k+1)%7%a?

eigenvalues A, Ii

Then the solution of the equation (1) can be given
in the following integral form:

s(a:,t):/t:/OL Gz, &, t— 1) w(é, ) dédr  (3)

where w(z,t) is a standardizing function (see [2]):
w(z,t) = so(x)8(t) + a®8'(z)y(?) 4)

which includes an exiting function, boundary and
initial conditions and 6(.) is the Dirac function. The
heating of the bar is controlled through the bound-
ary temperature y(t) = s(0,¢) and the task is to
find such function y(¢) - boundary heating of the
bar - which ensures the attainment of the required

spatial distribution ot the bar temperature s(z,?)
at a specified time instant ¢,. In this situation the
relation (3) simplifies to the following form:

g
s(z,ty) = a2/ 8_5 G(z, &ty — 7) [e=0 y(7) dT +
t

0

L
+/ Gz, &ty — t0) s0(€) € (5)

where so(z) = s(x,t0) is given initial condition.
The second part of equation (5) is known for known
initial conditions. Let us denote it as s.(x,%,) and
define the modified state s, (z,t,) as:

sm(z,ty) = s(z,t,) — sc(z,ty)
then

sm(@,ty) = (6)
tw a
= a? 3 %G(m,ﬁ,tv —7) |e=0 y(T)dT

This equation can be written in an operator form:

sm = Ay sm€S ,yeyY C”Z (7

where A is the linear integral operator of relation
(6), Z and S are Hilbert spaces, Y is a closed con-
vex set, build by a priori limitations of the control
task . The relation (7) represents an Fredholm in-
tegral equation of the first type and, the solution
of this equation fulfils the definition of the ull-posed
problems in the Hadamard’s sense. Therefore it is
necessary to use some regularization method, which
will give satisfactory results. In this article we em-
ploy the method of Tikhonov [18], where the task
of solving the equation (7) is replaced by the task of
the minimization of the following smoothing func-
tional My[y]:

Ma[y] =I| Ay = sms | e Ly I” (8)
where a > 0 is the regularization parameter.

Ap is an operator which approximates the operator
A with defined error h, that means

[ An = Al < (9)

Sms 1s the left hand side of (7), which is specified
by the error §, i.e.

5 = 5ms || < 6 (10)

The so-called generalized deviation is defined as :

p(@) =l An Yo — s |I” -
(8 4 h [y |2) = (1 (s, An)? (1)

where

ms, An) = inf || Apy — sm
p (sma, An) = inf | Any = sms |

is the degree of inconsistency.



‘I'he regularization parameter a of the smoothing
functional is chosen by generalized principle of de-
vtation, which is the following. If the condition:

| $ms 1> 6% + (u(sms, An))? (12)

is not fulfilled,the approximate solution of the equa-
tion (7) is y = 0. If the condition (12) is fulfilled,
then the generalized deviation (11) has a positive
root o* and the solution of equation (7) is a mini-
mum Ye~ of the smoothing functional (8).

In [18] various properties of the generalized devia-
tion has been proved. An important fact for our
algorithm is that in the presence of constraints the
generalized deviation is not a differentiable function

of a and therefore the numerical method used can
only employ the values of function p(a) in order to

localize the root. However, the generalized devia-
tion as a function of « is contlnuous, monotonic and
therefore has only one zero.

As regards to the accuracy of the proposed proce-
dure, the Tikhonov theory do not specify the pre-
cision to which a computation of the solution of
equatlon p(a) = 0 has to be carried out. However,
in an experimental situation with noisy data feW
decadic places were enough.

2.1. Overall algorithm

In the preceding section the inverse task for the
distributed model (1) was transformed to the prob-
lem of solving the operator equation (7) for a given
left hand side. The solution y,+ = y,(t) of this
equation forms the reference signal for the optimal
boundary control of the heated bar. The iterative
regularization method used for solving equation (7)
is valid only for in advance given and constant in-
tegral bounds tg,%,. This fact is necessary to take
into account in the designing of the generator of the
reference signal y,.(¢) for on-line boundary control
of the thermal system. One way is to base the gen-
erator structure on stepwise triggering the inversion
task in equidistantly located discrete time instants
t,. The distance between the time instants deter-
mines the bounds of integrals in the numerical so-
lution of the equation (7) and in next explanation
we will call this distance the inversion horizon T,.
From a practical point of view the length of the
horizon T, depends on several factors, namely,

e Technological needs for the heating process
and the goal of the heating.

e Dynamical properties of the thermal system.

e Time behaviour of disturbances acting on the
measurable system output.

In the process of the stepwise triggering of the in-
version task with the time period T, it is necessary
to know at the particular starting time instant a
true profile of the unmeasurable temperature dis-
tribution s(x,?) in the heated bar. The true pro-
file s(x,t) , which is really reached at the end of
a preceding period, creates the initial condition for
the inversion in a subsequent period. Because the
temperature profile s(z,t) is not measured, its true
time development can be only simulated using a re-
sponce of the model (1) due to the actually mea-
sured system output signal y(¢). For numerical cal-
culation of the true response s(z,t) , it is advan-
tageous to utilize again the operator form (7) of

the model. 'l'he length ot the time interval dur-
ing which the integration in (7) with the real signal
y(t) is performed we will call a simulation horizon
T,,. For numerical reasons it is suitable to choose
T = Ty /ni, where ni is a given positive integer.

The starting point for the numerical solution of the
simulation and the inversion tasks consists in a suit-
able discretization of the basic relation (7) and its
transformation to a matrix form. The resulting ma-

trix form oriented to the simulation we will call a
simulation model and the matrix form aimed at_the
inversion we will call an inversion model. Based on
the above models, the generator of the reference

signal y,(¢) is constructed. The required profiles
s, (x) enter the generator with time period T, and
the real measured signal y(¢) enters the generator
with period 15,.

3. Some numerical aspects of the proposed
method

In this section we focus on two points. The first one
is related to the robust computation of the integral
kernels for boundary heated system which are de-

rived from the Green’s function. Another one is re-
lated to the numerical problems near to the heated

boundary where the modelling with a Green’s func-
tion needs a special provision to give reliable data.

3.1. Optimization of Green’s function com-
putation

As was noted in [17] (pp.218) the summation of the
Fourier series is itself an ill-posed problem. Even
if the ill-possedness is weaker than that of the heat
conductivity inversion it is still good to know the
reasons for the numerical problems which some-
times occur. During the computation of the Green’s
function 1t can be observed that slight changes in
the algorithm, or bounds, lead to very different re-
sults.

In the case of the system described by equation (1),
the solution (5) can be expressed with the following
two integral kernels:

a% G(z

G([L‘,g, T) = GT(m)g)

&, 1) le=o= Gag(z,1)

exp (=0T — X T)on(z)en(€)

We propose an optimized method for the computa-

tion of the Green’s function which contains accurate
error bounds. The advantage of such a method can

be seen when accurate results are needed near zero
in time and near the heated boundary in space. In

this case the points near time zero can easily re-
quire many thousands of terms in the series but as
the time increases this number immediately drops
to less than about 10.



We first turn our attention to the kernel Gye(z,1)
and later it will be seen that the kernel Gr(z,¢)
can be represented in a similar form.

The kernel Gp¢(x,t) can be written in the following
form:

Goe(x,t) Z (2n + 1 exp (—bt — Apt) x

SOH(I)
><2n_+_1 (14)

It 1s known from the basic theory of Fourier se-

_ co sin(Zn41)ZE
ries that En =0 ‘)ng-zl) - En:O 2n+1 == 7!'/4
when 0 < z < 7. Let us denote M, = (2n +
1)?exp (—bt — Ant). M, > 0 is positive for all
n > 0. M, as a function of n > 0 has only one
extremal point as follows from the properties of
exponential function. This extremal point can be
computed taking the derivative of M,, as a function
of n, i.e.

d(i ((2n+ D) exp (=bt — A,t)) =0

no= [y /2= 1)/2]

Thus for all n > ng the sequence M, is monotoni-
cally decreasing to zero.

We denote S(k) = Z::o %ﬁl the partial sum of

Yo £ and with R(k) = Y02, 2 — S(k) =

S kil QnEI-I) the residual part of the series. Using

the Dirichlet criterion we can conclude that

S 8011(1’)
M, :
| Z "on+1

| < My41|R(k+1)] (15)

n=k+1
or,
= on () T
M, LI <M —— Sk
3 Mo S Mo - SO0

whenever k > ng. Thus the algorithm can compute
the relative error of the series sum using the term

My |5 — S(R)|.

For the kernel Gp(z,¢), a similar method can be
used by taking into account the following: the fol-
lowing;:

1 (2k+ D7
en()en(@) = gleos DT (0 gy
2k + 1)m
—COST(Z+£)]
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Figure 1: The numerical study of the relation between
the space and time grids for the equation (16).
The x-axis represents spatial coordinate in me-
ters and the y-axis the temperature in degrees
Celsius. The boundary condition was constant,
namely y(t) = 20.

3.2. Accuracy of the simulation near the
heated boundary

The major numerical problems encountered during
the simulation and inversion in the method are re-
lated to the kernel Ga¢(x,t). Therefore, let us sup-
pose for the simplicity that in (5) the initial condi-
tion so(x) is zero. Then the state of the system in
a certain time instant ¢ can be written according to
equation (5) as:

= 112/ Goe(x,t —m)y(r) dr (16)

to

A numerical study of the actual experimental device
(see Figure 2) which is illustrated in Figure 1 shows
that when we use equidistant grids in space and
time they are not well adapted. The time grid must
be much more dense than that in space in order to
obtain sufficient accuracy near the boundary z =
0. In Figure 1, the results of 3 computations with
the same grid in space containing 20 points and 3
different grids in time, one with 20 points, another
with 200 points and the last with 1000 points, are
presented. The results show that 200 point grid
1s not sufficiently dense to get reasonably accurate
results.

One possibility how to deal with the above prob-
lem (which is actually used in current simulation
and experiments) is to use non-equidistant B-spline
aproximation with knot points which are more
dense near time zero.

Another possibility is the following. The integral
equation (16) describes the solution only in the in-
terior (0 < # < L) of the spatial domain. Using the
Fourier separation of variables technique and deriv-
ing from first principles we can obtain the following
description of the solution for the whole spatial do-
main 0 < z < L,

s(z,t) = y(t) + / Gi(z,t = 7)[—y!(7) = by(7)] d7  (17)
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The advantage of the kernel Gi(z,?) is its better

numerical behaviour. The series for this kernel
converges faster and the grids are better adapted.

However, the cost of this improvement is that the

intuitive relation between the solution of the in-
tegral equation (16) and the function y(¢) is lost.

As can be seen from (17), during the inverse prob-
lem solution there are two steps, firstly, the integral
equation has to be solved and then the first order
ordinary differential equation must be solved.

To see the relation between the system description
(16) and (17), the equation (17) can be modified by

integration by parts to give

s(z,t) = y(t) — Gi(z,0)y(t) +

+a2v/t’ Goe(x,t — T)y(r) dr (19)

This gives the same description inside the spatial
domain as in (16) because for 0 < ¢ < L G1(z,0) =
1. But for the point & = 0 the value G1(z, 0) is zero
as well as the value of the integral kernel in (19)
leading to the value y(¢) at the boundary.

4. Experimental results

The configuration of an experimental specimen on
which the method has been verified is shown in Fig-
ure 2. It consists of a copper metal bar which 1s
heated at one boundary and insulated at the other
one. There are 8 thermocouples installed on the

bar which can be used for the verification of the
proposed method.

Equation (1) models the experimental device with
a reasonable accuracy if the heat conduction and
heat transfer coeficients are properly identified. We
have used an off-line identification method, based
on the fact that after reaching steady state of the
system on some higher temperature we can switch
the boundary condition at the heater side to the
insulated-end Neumann type condition by simply
switching off the heater. The system will relatively
soon reach a state when the g—;(.r,t) < ¢ for all
0 < 2 < L ie. the temperature along the bar is
nearly constant. €1 is an a-priory chosen small con-
stant. In our case the system has been heated to
the steady state with boundary temperature 260 de-
grees Celsius. Subsequently, after switching off the
heater the system reached the state where ¢; was
under the level of the noise at about 60 degrees.
From this moment the behaviour of the system is
described by the simple first order differential equa-

tion %5 + bs = 0. This equation is solved analyti-
cally thus providing a possibility for high precision
identification of the heat transfer coefficient. The
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L - lenght of the bar

s(x,t) - spatial distribution of the
temperature at the time instant t
y(t) - boundary temperature

u(t) - input signal

1 -thermocouple

Figure 2: The experimental devise consting of a heater, a
metal bar and a set of thermocouples. At the
one end of the bar there is a heater. Another
end is insulated. There are eight thermocouples
along the bar. The main physical processes are
the heat conduction from the heater and the
heat transfer to the surrounding air. The power
of the heater allows a temperature range 0-300
degrees Celsius.

results of this experiment are in Figure 3, where we
use more and more points for computing b going
backwards in time. Once we know accurately the
heat transfer coefficient it is easy to compute the
heat conduction coefficient by driving the system to
steady state and solving the boundary problem for
the first order ordinary differential equation. The
resulting values are b = 0.002, a = 0.0906.

The experimental results are presented on the two
sets of experiments. Both sets have the same struc-
ture but use the different values of the parame-
ters a, b to illustrate the sensitivity of the proposed
method to those parameter values.

Each set of the experiments is organized as follows:
the experiment starts in a certain state of a system,
then we submit subsequently in a step-wise manner
5 different states which the system must reach in an
a-priori given time horizon. At the end of each time
interval we compare the prescribed goal state with
the state which the system has really reached and

the internal simulation state which is maintained
as a starting state for further steps of the step-wise

method, as was described in detail in [12]. The ac-
tual measured state of the system is shown in 15
points but only every second one is obtained by
direct measurement. The points between are inter-
polated by the use of splines.

The first set of experiments i1s given in Figure 4
and the second in Figure 5. In both sets, Figure
A shows the boundary temperature. Figure B con-
tains the heater controls and the remaining Figures
t0-t5 show the states at the subsequent time steps.
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Figure 3: The identification of parameter b. The unit
on the x-axis represents 100 seconds. The x-
axis shows the computation of b in time going
backwards

5. Conclusion

The experimental results support the developed
step-wise method. However, during the verification
process we have also identified certain drawbacks
which show possible further research directions.

Some difficulties can be overcomed by carefully
choosing the spline representation base functions.

Others are more inherent to the Green’s function
approach and could be overcomed only by choosing

a different approach. For example, when the equa-
tion is of a more complicated nature the explicit

form of the Green’s function_could he not at hand.
Also, during the forward problem solving the simu-

lation with the integral kernels is rather computa-
tionaly complex. Another problem is the reduced
flexibility of the method due to the fixed time inte-
gration horizon, which asks for recalculation of the
matrices each time the basic time step ¢, has to be
changed.

One promising direction is the use of the well known
numericaly stable difference schemes, or finite ele-
ments, for the forward modelling. However, in this
case the inverse problem formulation as well as nu-
merical behaviour is a subject of current research.
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Figure 4: The set of experiments representing a continuous run of the system through goal states in step-wise way for the
parameter values ¢ = 0.0906,b = 0.002. In Figure A the full line shows the predicted temperature computed by
solving the ill-posed inverse problem, the dashed line is the experimental temperature. In Figure B there is a
control signal - the input to the heater. In the Figures t0-t5 there is a comparision of the prescribed goal state
(fulll line) with the actually measured state (the stars) and the internal simulation state (dashed line) which is

maintained as a starting state for further steps.




. . . . . . . .
t0 tl t2 t3
G0
N N N N N N N N
o} S00 glilelslel 1500 2000 2500 2000 2500 L lelelel
A ome [s]
8 . . . . . v v v
? - -
S
=. 5
[
=
=
=
=
==
= 3
—
-
1 F -
O N N N N N N N N
Lo ] S00 1000 1500 2000 2500 2000 3500 <4000
B ome [s]
time instant 0 time instant t1 time instant t2
180 180 180
160 160, weo\‘*\x
140 140 W 140 = \
G'\ZO G'\ZO G'\ZO B e
[ [ [ %
2 100; 2 100 2 100
2 80 = % 2 80 ey 2 80 >
3 r 3 Ty 3
2 60 gy 2 60 2 60
~~~~ R
40 40 40
20 20 20
0 0 0
tO 2 4 6 8 10 12 14 t]_ 2 4 6 8 10 12 14 t‘) 2 4 6 8 10 12 14
measured point measured point ) measured point
time instant t3 time instant t4 time instant t5
180 180 180
160; 160 160
140 K 140 140
G'\ZO F G'\ZO G'\ZO
[ = [ [
2 100 - £ 100k £ 100
1] 1] s 1]
. Dk o § a0 X . g a0 o
2 60 2 60 e 2 60 S
40 40 40 P
20 20 20
o 2 4 6 10 12 14 o 2 4 10 12 14 o 2 4 6 12 14
t 3 measured point t 4 measured point t 5 measured point

Figure 5: The set of experiments representing a continuous run of the system through goal states in step-wise way for the
parameter values ¢ = 0.0135,b = 0.00485. In Figure A the full line shows the predicted temperature computed
by solving the ill-posed inverse problem, the dashed line is the experimental temperature. In Figure B there is
a control signal - the input to the heater. In the Figures t0-t5 there is a comparision of prescribed goal state

(fulll line) with the actually measured state (the stars) and the internal simulation state (dashed line) which is
maintained as a starting state for further steps.



