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Abstract

Hermite normal form and Smith normal form are canonic forms of integral matrices with
respect to congruence produced by multiplication with right unimodular matrix resp. by
multiplication with left and right unimodular matrix simultaneously. This lower-diagonal
resp. diagonal form has many applications in various fields. Unfortunately, the computation
of them is extremely resource consuming. The present note shows a construction of certain
more complicated instances of integral matrices. The systematic construction of such ma-
trices complements a research with respect to randomized versions of Hermite normal form
and Smith normal form algorithms [11].

Keywords: number theory, operation research, integral optimization, Hermite normal
form, Smith normal form.

1 Introduction

In many applications where computers are used to solve or to optimize problems, it has been
proved useful to formulate various combinatorial relations of the problem in terms of integral
matrices. It is a basic formalism for integral optimization. The same holds for many problems
”inside” computer science and mathematics.

Once we have formulated the problem in terms of integral matrices it is often crucial to
know a canonic form of those matrices [1]. The Hermite normal form and Smith normal form of
integral matrix play an important role among various canonic forms which can be defined. The
applications of Hermite normal form and Smith normal form can be traced back to various fields
like integer programming, system theory, algebraic theory of control, algebraic group theory etc.
For recent survey see for example [13].

The main obstacle in obtaining these canonic forms consists in extreme growth of interme-
diate numbers during computation. Even there was a time when it seemed that the known
algorithms are exponential in number of bits used during the computation. The first algorithms
with provable polynomial upper bound in number of bits were that of Kannan, Bachem [6] and
Frumkin [5]. If the algorithm used is not highly optimized one, the intermediate results can be
easily in orders larger than the determinant of a matrix, which in turn is usually much larger
than the matrix entries. For example, in [12], there has been a rather spectacular example
reported where a 20x20 matrix has been found with entries not exceeding 10 but with numbers
of order 10°%'! occurring during the computation. The determinant is bounded in this case by
the value 1033,

The present contribution is related to the following question. During the computation of
Hermite normal form (HNF) resp. Smith normal form (SNF) it is worthwhile to know a ged of a
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sub-matrix of the given matrix. The question is whether we can suppose that certain ”limited”
computation (let us say using only few elements in matrix) can give us this number. The special
construction of this note shows that this is not true in general. There are matrices for which all
elements must be taken into the account when we are computing the gcd of them. On the other
hand such complicated matrix instances are very large, raising a question whether we could not
compute these numbers with high probability. Indeed, this is true as was shown in randomized
versions of HNF and SNF algorithms [11].

We construct a matrix using a set of different primes which has a property that any ged
computation using row elementary operations between any two elements of a matrix will not
produce a gcd of all elements of the matrix. Even more the gcd of all elements is not equal
to the ged of any column of the matrix. For example the following 4x4 matrix has the above
property (even more, any gcd of any three elements in the same column does not equal to the
ged of the whole matrix which is 1):

4410 190190 1036518 2803170
11025 293930 1397046 3213390

(3150 170170 868434 2485830)
7350 248710 1108002 3063930

2 Hermite and Smith Normal Form

An integral matrix U with | det(U) |= 1 is called unimodular. For convenience, throughout
we assume matrices are n X n and nonsingular; there is a natural generalization for arbitrary
integral matrices. Every nonsingular integral matrix has a lower triangular integral canonic form
called Hermite normal form (see [4], theorem 2 below). The Hermite normal form of matrix A is
a unique representative of an equivalent class of matrices with respect to congruence produced
by multiplication with right unimodular matrix: A =gy B iff AR = B where R is unimodular.
Another very important congruence is: A =g B iff LAR = B where LR are unimodular.
Canonic form with respect to this congruence is called Smith normal form (see [10], theorem 3
below) and it is a diagonal integral matrix.

Definition 1 (Elementary operations) Let us have an integer matrizc A. We call the fol-
lowing three kinds of operations on columns of the matriz A elementary operations:

1. Ezchange of the columns i and j. We denote this operation by S€(i,7) i < j or S when
only a type of the operation is of interest.

2. Multiplication of the column i by —1. This operation is denoted by M(i) or M when
only a type of the operation is of interest.

3. Addition of k times © — th column to the 7 — th column. This operation is denoted by
iy phind
AC°(i,j,k) when i < j and A°(j,i,k) when i > j or A when only a type of the operation
is of interest.

Theorem 2 (Hermite [4]) Given a nonsingular n x n integral matriz A, there ezists a n X n
unimodular matriz R such that H = AR is a lower triangular with positive diagonal elements.
Further, each off-diagonal element of H is non-positive and strictly less in absolute value than
the diagonal element in its row. H is called the Hermite normal form of A.

It is known (see for example [7]) that the Hermite normal form of a matrix A is unique and
the right unimodular matrix is unique too . Elementary operations from Definition 1 can be
realized through multiplication of the matrix A by special matrices called elementary matrices.
Elementary matrices are unimodular.



Theorem 3 (Smith [10]) Given a nonsingular n X n integral matriz A, there exists n X n uni-
modular matrices L,R such that S = LAR is a diagonal matriz with positive diagonal elements
dy,...,d, such that d; divides diy1 (1 =1,...,n—1).

The matrix S is unique similarly as with Hermite normal form but the matrices LR are
not unique. The unimodular matrices L, R are a product of elementary matrices. The only
difference is that a left multiplication of a matrix with some unimodular matrix means a se-
quence of 7&1} elemen{t;ary operations similar to those in Definition 1. We denote them S*(3, j),
M (i),A™(1,5, k), A (2,5, k)

The 2 X 2 matrix g, = ( ’ ’A‘ifﬁ/gg ) where g is a great common divisor of A; 1, A2 and
P, q are numbers satisfying A 1p + A1 2¢ = ¢g. Unimodular operation represented by matrix Ey
embedded in Ex plays an important role both in theory and computation. We call this kind

of operation Euclidean and denote it by CE(i,‘;,k) resp. CE(E,k) We use a word unfolding
to denote a process between certain elements in matrix leading subsequently to their gcd. By
folding we mean similar sequence of operations but divergent.

To give the reader a flavor of algorithmic approach we can think about the following simple
algorithm for Hermite normal form. Take two nonzero elements in the first row, use elementary
column operations to subtract the smaller number from the larger. After finite number of
repetitions only one element in the first row will be nonzero. Put this element to the (1,1)
position, strip out the first row and column and proceed with the resulting sub-matrix. After
obtaining lower-diagonal matrix reduce under diagonal elements to the left.

Unfortunately, the above algorithm suffers from intermediate entry explosion. This phe-
nomenon was a reason of research in this field which we survey briefly in the next section.

2.1 Algorithms for Hermite and Smith Normal Form

The computational aspects of Hermite normal form and Smith normal form begun to be more
widely investigated about 1950. In 1952 Rosser [8] proposed an algorithm to compute the
Hermite normal form using only elementary operations (see Definition 1). Smith normal form
is treated from an algorithmic point of view in [9].

Early it was seen that attention must be given to the phenomenon associated: when unfolding
operations occur in a row of the matrix (leading to the gcd of the row resp. column elements),
a folding occurs at the same time in other rows of the matrix. Entries become to be very large.
This problem was explicitly formulated by several authors and was called expression swell.

The next important step was made by Bradley in [2] where he introduced the operation
which we call Euclidean. From that time on all proposed algorithms use Euclidean operations
as a basic tool and the main attention is given to the analysis of expression swell even if the
algorithm of Rosser is experimentally still investigated. But the theoretical analysis remains
open.

Kannan and Bachem proposed the first algorithms with a known polynomial expression swell
in 1979 [6]. They proved the upper bound on the number of bits for the largest matrix entry to
be n3(logy(n) +log, || A ||). Chou and Collins in 1982 introduced a new algorithm for Hermite
normal form where by reordering the computation in Kannan - Bachem process they achieved
an upper bound of n(logy(n) + log, || A ||).

In 1987 Domich, Kannan and Trotter introduced a modulo determinant arithmetic [7]. They
proved an upper bound n(log,(n)+logs || A ||) on the number of bits for their modular method.
A modulo determinant computation has one very important feature, it can be combined with
any other method of computing a Hermite normal form of matrix. Because Hermite normal form
of an integral matrix can be computed with modulo determinant arithmetic, also Smith normal
form can be computed using modulo determinant arithmetic when we use successive Hermite



normal form computations with the method developed in [7]. Similar method of Smith normal
form computation is also presented by Iliopoulos in [3].

Another method of Hermite normal form and Smith normal form computation consists in
residual computation modulo relatively prime factorization of determinant. Computation mod-
ulo various prime factors was also considered but the problem is to choose adequately the prime
moduli to obtain correct Smith normal form of a given matrix. The answer is known only for
special classes of matrices.

Recently new methods have been developed to compute Smith normal form via randomiza-
tion technique as described in [11].

The question whether the number of bits for the largest matrix entry is polynomialy bounded
in the Bradley algorithms for Hermite normal form and Smith normal form is still open even if
some experiments seem to show that it is not.

3 Construction of a Matrix with Global Gcd Different from Lo-
cal Computed Gceds

In the following the symbol A C B means that A is a proper subset of B e.g. A C B; A # B.

Lemma 4 Let U is infinite countable set (universum). Then for every n € N; n > 2 there is a
system of finite nonempty sets S1,S9,...,Sn; S; C U with the following properties:

1.
n
Si=0
i=1
2.VK; ) Cc K C{1,2,...,n} it holds
N S #0
€K
Proof. We can suppose that U is enumerated in the sequence (u1,us,...,us). During the
construction we will subtract subsequently more and more elements from the set U and use
them as elements of the constructed sets Si,So, ..., Sn.

The construction proceeds by induction, let n = 2. Then the sets S1 = {u1,u2} and Sy =
{ug,us} fulfill the required properties. Let us suppose that we have already constructed a system
of sets S1,S59,...,S5,_1 which fulfills the both properties. The set S, is constructed in the
following way: We take a new element uy, from the sequence U. This element is not contained
in any of the sets S, S2,...,S,-1. Let S; = S; Uuy, . That means, the new element is added to
each of the sets S1,S5,...,5,-1. Now the property 2. is clearly fulfilled for the system of sets

1, 8%,...,Sh_| but also ' S! # 0. Now we proceed by induction through the cardinality
of K. At the beginning we take arbitrary element from each of the sets Si,So,...,S,_1 and
unify them into the new set S’y(bl). Now the property 2. is true for all K with cardinality 1.
Let us suppose that property 2.is true for all K with | K |=[,] < n — 1. Fix arbitrary K,
that has a cardinality [ + 1. There are two possibilities. Either, K does not contain n or it
contains . In the former case (;cx S; # 0 is trivially valid because the intersection contains
at least the element uy, . In the former case we enlarge S,, with the intersection of all S; except

the one for which ¢ = n e.g. Sgﬂ) = Sn U Nick\{n} Si- Now take as a new system the sets
1595, .y Sh_1, =1 From the construction the system fulfills the property 2. The property

1. is also true because the intersection (' S! contains exactly the element uy, but the set

S~V has been exclusively constructed from the elements of the sets S1, .59, . .., S,—1. Therefore

izt sin sy =0.



Lemma 5 Let the symbol N}, a; denotes for a moment the gcd of n elements {a1, ag,...,a—n}.
Then for each n > 2 there is an integral vector (ai,ag,...,ay) for which \j_qa; =1 but VK;
@ C K C {1,2,...,77,} /\iEKa‘i > 1

Proof. We can take as a universum U in Lemma 4 the set of all primes, enumerated
according their size. Fix arbitrary n > 2. According to the Lemma 4 there is a system of sets
S1,59,...,5, each consisting of different primes for which the property 1. and 2. of Lemma 4
holds. Then put a; = Hpke s; Pr- The Lemma 4 now implies the required statement.

Now, take subsequently new primes and construct vectors ¢y, cg, - - -, ¢, each consisting of n
different numbers according to Lemma 5. Construct also another vector (r1,r2,...,7r,) in the
same way. Then the matrix consisting of columns (ricl,rocl, ... ,rngg) has the property we are
looking for. Actually, we can take as a vector (r1,72,...,7,) one of the vectors ¢;, When n =4
we obtain the following matrix:

4410 190190 1036518 2803170
11025 293930 1397046 3213390

(3150 170170 868434 2485830)
7350 248710 1108002 3063930

4 Conclusion

The general construction presented in this paper which leads to the matrix instances with high
complexity provides a deeper insight into the structure of HNF and SNF computation. It can
also serve as a test-bed for algorithms computing Hermite normal form and Smith normal form.

One interesting fact about this construction is that even in low dimension the resulting ma-
trices are very large. This complements the research branch dealing with randomized algorithms
for HNF and SNF. If the construction could be proved to be optimal, further consequences can
be derived for improvements of randomized algorithms as well as general algorithms for HNF
and SNF.
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