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This paper describes a new approach to the hidden line problem in computer graphics. We assume

that a 8D wvisible grid surface scene is given. A raster space (image space) method for effective

solving of hidden line problem is defined for this well established instance of hidden line problem.

The solution of the visibility problem relies mainly on a special Bresenham-like linear interpolator

and on a new enumeration of edges resp. facets.
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1 Introduction

The hidden line problem is one of the major al-
gorithmic problems in computer graphics. The
roots of this problem can be followed to the early
sixties (see [3, 1]). One of the well established
instances of this problem is a hidden line elimi-
nation in projected grid surfaces. Grid surfaces
arise when we want to render the graph of a func-
tion defined on a rectangle in 3D Euclidean space.

An example of such surface is in figure 1. The el-



Figure 1:

The projected grid surface.

ements from which the picture consists are called
facets. Facets are the images of grid elements of
the function in 3D.

As was many times emphasized there are two
fundamental approaches to the visible surface de-
termination. The first approach is called object
space approach and relies in various ways to rep-
resent objects in the scene by discrete combina-
torial representation. The basic objects used are
geometrically defined subsets of Euclid space R3
( i.e. points, edges, polygons, polyhedra e.t.c.).
The brute force method of this kind compares ev-
ery object with other objects and finds the visible
resp. invisible parts.

The second fundamental approach (the im-

age space approach) is to solve the visibility in

every pixel in image space. A straightforward
way relies in examining all objects and determin-
ing which of them is the closest to the viewer on
the projector passing through a given pixel. Im-
age space methods are often realized in hardware.
The Z-buffer method is a widely used representa-
tion of this class but it has a drawback that when
the number of objects and the pixel resolution is
large the computational cost can be very high.

The above classification is only a basic pat-
tern.  Many algorithms combine above ap-
proaches. Our algorithm is in essence an image
space algorithm but the structures we use are
more rich compared to the Z-buffer.

The classical work solving the hidden line prob-
lem for projected grid surfaces is that of Wright
[5].

due to Anderson [6]. This method works in ob-

A more recent important contribution was

ject space and achieves linear complexity with
respect to the number of facets. The complex-
ity is established only experimentally. We think
that it could be derived from more recent works
of Overmars (see for example [2]).

Our method works in raster space. It also
achieves linear speed with respect to the number
of facets. Recently we have learned that similar
algorithm was independently discovered by Wang
and Staudhammer [7]

Our contribution consists mainly in the enu-
meration of facets and also in the method how

we use interpolation algorithm.

The article is organized in the following way.



In section 2 we define the basic terminology. Sec-
tion 3 overviews the algorithm and section 4 com-
ments our development and suggests some fur-

ther directions of research.

2  Grid Surfaces

Let we have a single-valued function f which

f(z,y).

The cartesian product of two sequences of points

(xlv s 7'1‘71)7 (yl; .

of 3D Euclidean space. In every grid-point (z;, y;)

maps from R? to R of the form z =

., Ym) define a grid in x-y plane

we have a value of the function f: z;; = f(x;, ;).
An image under function f of the elementary
surface in x-y plane is a surface in 3D space.
The projection of this surface in 3D space to
the viewing plane is called facet. To define pro-
jection plane we must have a viewpoint VP =
(VP,, VP, VP,) with a viewing direction VA =
(VA;, VA, VA,).
jected to the projection plane. Finally the pic-

The points in 3D are pro-

ture data are scan converted (approximated) from
the projection plane coordinates to the device co-
ordinates. The device coordinates resp. raster
space is an integral lattice which models concrete

raster devices as raster displays etc.

3 The algorithm overview

Our solution use an old idea of contour (floating
horizon) but in a raster space sense. To obtain

an effective algorithm we use two contours (hori-

zons) in the raster space. They are represented
with a simple data structure consisting from two
vectors. The first maintains y-coordinates of the
up growing contour in raster space and the sec-
ond maintains y-coordinates of the down growing
contour.

When the contour is defined in the raster space
it is possible to test the contour during the inter-
polation. In our algorithm the Bresenham inter-
polator is modified so that during a point gener-
ation the visibility is tested against the contour
and subsequently the contour is modified. This
is another basic idea of our approach.

In the following paragraphs we overview the

main steps of the algorithm.

1. The point with the smallest y-coordinate
in the projection plane is found from the
four corner points of the rectangular area
(@1, 91)s (Tn, %1)s (Tn, Yn), (T1,9n) on which
the function is defined. The algorithm has
four branches according to the point which
is at the bottom. This point is the start-
ing point for the enumeration of edges resp.

facets.

2. The direction for the enumeration of edges
is determined according to the relation be-
tween the angles ay, sy (see figure 2). The
enumeration always follows the smaller an-
gle. In the situation in figure 2 the enumer-
ation follows the numbering of the edges.

This method is expressed in the main loop



Figure 2:

The figure illustrates how the facets resp. edges are

enumerated.

of the algorithm.

3. When the appropriate edge to be drawn is
identified the edge is projected to the pro-
jection plane and the end-points are scan-
converted to device coordinates. Then the
algorithm use a modified Bresenham inter-
polator. This interpolation is done two times.
Firstly with respect to the upper contour
and then with respect to the lower contour.
In figure 3 we give an algorithmic primitive

for such interpolation in one octant.

4 Conclusions

In this section we comment our development and

suggest further direction for research.

e It is intuitively straightforward to see that

the presented algorithm is correct. But to

prove this assertion would need further in-

vestigation.

Because the algorithm visits every edge resp.
facet only once the complexity is linear with
respect to the number of facets. In the case
of raster space algorithm it is worthwhile
also to express the complexity as a func-
tion of two variables: number of facets and
resolution. We suggest that this function
C(s,N) < O(s.N) is strictly bounded with
N.s and equals O(s.v/N).

The algorithm was implemented in opti-
mized version for image processing system
and it proves to be very useful and efficient.
We have used it also for animation of pro-

jected grid surfaces.
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The algorithmic primitive for interpolation in the
first octant. The function point(..) in line 200
is different for the up-growing contour and the

down-growing contour. Those forms are in fig-

ure 4 resp.

10if(abs_dx > abs_dy)
20 {
30 inc_1=2abs.dy;
40 inc_2=2(abs_dy-abs_dx);
50 dd=2abs_dy-abs_dx;
60 abs_dx++;
70 if(x_point>d_x)
80 {
90 exchange=y_point;
100 y-point=d_y;
110 d_y=exchange;
120 exchange=x_point;
130 x_point=d_x;
140 d_x=exchange;
150 }
160 if(y_point < d_y)
170 {
180 while(abs_dx) /* x+1 y+1 */
190 {
200 point(x_point,y_point)
210 x_point++;
220 if(dd < 0)
230 {
240 dd+=inc_1;
250 }
260 else
270 {
280 dd+=inc_2;
290 y-point++;
300 }
310 abs_dx—;
320 }
330 }
340 }
Figure 3:

in figure 5.
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10point (x_point,y_point)
20 {
if (y_point < contour_up[x_point])

{

contour_up[x_point]=y_point;

point_xy(x_point,y_point);

}

Figure 4: The algorithmic primitive for the func-
tion point() which tests the visibility and updates

the contour for the up-growing contour.
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10point (x_point,y_point)
20 {

if (y_point > contour_down[x_point])

{

contour_down[x_point]=y_point;

point_xy(x_point,y_point);

}

Figure 5: The algorithmic primitive for the func-
tion point() which tests the visibility and updates

the contour for the down-growing contour.
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