Clif a C-like Interpreter Framework for Scientific
Computing

T. Hriz and L. Koren!

Abstract

This paper describes an open C-like interpreter Clif.
The main goal of the development is to prepare
a syntactic and semantic framework which can be
easily enriched with application directed syntac-
tic and semantic subsystems. The interpreter con-
tains an implementation of basic atomary types. A
further data abstraction mechanism allows a use
of n-dimensional arrays of atomary type elements.
The functional abstraction allows a use of recur-
sive function calls. Parameters in function calls are
passed by reference and the interpreter architecture
is optimized for manipulation with large objects.
The interpreter contains also well-defined slots for
client-server paradigm as well as user interfaces on
various levels.

1. Introduction

There are many situations when it is needed to pre-
pare large programs for computer intensive infor-
mation processing and for control of technological
processes. Usually, to do this task efficiently the
most appropriate way is to develop a language. The
interpreter Clif is a convenient starting specification
and a tool for these purposes.

The general concept which we follow (and is meant
with the word framework) is to prepare in an open
way syntactic and semantic structures with expres-
siveness similar as in the common programming
languages like C, FORTRAN etc. Then user can
add syntactic and semantic structures specific to a
given problem. A powerful application directed lan-
guage is easily obtained this way. From this point
of view Clif could serve as an empty or skeletal lan-
guage in the same sense as skeletal expert systems
are build and subsequently filled with an applica-
tion directed information.

Our intention is also driven by similar reasons as
had motivated a development of MATLAB and sim-
ilar environments i.e. to have a convenient and open
tool for manipulation with objects in large and op-

1Slovak Technical University, Faculty of Mechanical En-
gineering, Department of Automatic Control and Measure-
ment, Namestie Slobody 17, 812 31 Bratislava, Slovak
Republic, Phone: +42-7-497193, 493041 /ext.497 E-mail:
hruzQ@cvt.stuba.sk, korenl@cvt.stuba.sk

timized scientific computing libraries as BIGNUM
[12], LINPACK [6], etc.

In our development we stress user interfaces on
all levels of the interpreter system. A user can
write procedures within the Clif specification, he
can build modules using different languages and
link those modules into the Clif but even more he
can add new language structures to Clif.

The next sections are organized as follows: in sec-
tion 2 we describe main syntactic and semantic fea-
tures of the Clif. In section 3 we follow some aspects
of architecture and implementation of the Clif sys-
tem. In section 4 we conclude with comments about
further development of the interpreter. A formal
definition of the Clif syntax is in appendix A as
well as the syntax of graphics subsystem which is
in appendix B. In appendix C the instruction set of
the Clif virtual machine is described.

2. Main syntactic and semantic features of
the Clif system

The syntax of Clif can be classified to two parts.
The first part which represents most of Clif syntac-
tic structures is a proper subset of C language. This
subset contains all key constructions of C language
except higher type abstractions. Clif currently does
not contain structures, unions and pointers. Some
other differences are caused by restrictions to the
key language subsystems. For example, currently
the specification of Clif contains the program flow
control statements ”for”, ”while” and ”if” but does
not contain the ”switch” and ”do while” specifica-
tions because they do not represent anything new
in the language concept. The latter syntax can be
easily added in the future. The C-compatible part
of Clif contains one semantic difference. Parame-
ters are passed to functions by reference because
according to the main goal of Clif we suppose ma-
nipulations with relatively large objects (matrices,
splines, etc.). Also the type checking is stronger in
Clif than in C. We have no default types.

Another part of Clif is centered around the direc-
tions of future development of the language. This
part is represented with ”remote” class of com-
mands. This is a slot to remote procedure calls

and client server paradigm. We have also in mind
specific atomary types as are arbitrary precision in-
tegers, matrices and splines.

Clif is a multiplatform compiler based on various
UNIX platforms.

The interpreter consists from two main parts: the
compiler and the virtual stack machine. A pro-
gram for Clif is a sequence of zero level syntactic
structures. When a complete zero level syntactic
structure is read it is compiled to the virtual ma-
chine code which is then executed. The debug-
ging and the user control over a program execu-
tion is realized with the synchronous interrupt com-
mand ”csuspend” and with an asynchronous inter-
rupt handling. In both cases the interpreter reacts
with opening of a new fully functional interpreter
level. A user can finish the computation on the cur-
rent level with a command ”resume” which resumes
the computation on the lower level.

Clif has three levels (interfaces) through which user
can add new modules and enrich the environment.
Firstly, user can write functions in Clif language
which is the most natural and simple way. Sec-
ondly, more experienced users can write modules in
FORTRAN or C language and link them to Clif en-
vironment. This sort of openness is realized via
"remote” class syntax. The third and the most
powerful way how to enrich Clif environment is to
change the language itself. This is enabled by sys-
tematic use of compiler-compiler technology [7, 11]
and careful structural development of Clif [9, 10].
For example, there is a well defined procedure how
to add a new atomary type to the language.

The graphics output for applications in optimal
control and identification is realized with external
subsystem of graphics window channels. There is a
special language for the channel specification, which
is defined in appendix B.

3. Architecture and implementation of the
Clif system

An important decision in the design of C-like inter-
preter is to establish syntactic and semantic blocks
on which it is reasonable to suspend the parsing and
switch to execution. These considerations have led
us to the solution where the interpreter is clearly
split to a virtual machine and to a language pars-
ing and code generation engine.

The virtual machine is an abstract model of com-
puter with a low level instruction set. The in-
terpreter works in an alternating two-step mode,
where the parser translates a level zero syntactic
block and generates a code for the virtual ma-
chine. Subsequently the virtual machine executes

the code. The code is always finished with the in-
struction STOP, which gives the control back to the
parser.

In the following sections we describe in more de-
tail some aspects of the virtual machine and parser
design.

3.1. Virtual machine

During the virtual machine design process we have
followed three main objectives:

1. To obtain a machine which naturally supports
the C language.

2. To have a simple instruction set consisting of
instructions with a medium complexity.

3. To minimize a copying and migration of ob-
jects in memory.

The first design objective has led us naturally to a
certain sort of stack machine. The virtual machine
has no general purpose registers. All operations
occur on the top of the arithmetical stack. The
fact that a stack machine supports C language was
also described in the series of articles [3, 4, 5] where
the same objective has led authors during design
of a microprocessor chip. The result was a chip
which considerably emphasizes stack operations for
C language support.

The second design objective fits nicely into the
framework of RISC microprocessor instruction sets;
therefore we have inspired ourselves with such sets.

The third design objective stems from the intended
applications of the interpreter. We expect to work
with relatively large objects (with granularity of
kilobytes) where any inefficiency caused by object
copying can significantly reduce a performance of
the interpreter.

To match the above design objectives we use the
following structure of the virtual machine. There is
a main memory with global variables and function
bodies located from the top and the stack growing
from the bottom (see figure 1); there is an arith-
metic stack and temporary stack. To avoid copying
of objects, the arithmetic stack contains addresses
of objects located in the main memory, stack or
temporary stack. Also the parameter passing mech-
anism for recursive function calls works strictly by
reference. This architecture allows us to avoid at
all copying of objects, except the copy operation
explicitly demanded with an assignment operator.

In appendix C we briefly describe the RISC-like in-
struction set of the virtual machine.

glob. var.

func. body

glob. var.

stack

main memory

Figure 1:

arithmetical stack

temporary stack

The top level structure of the Clif virtual machine

3.2. Parser and code generation

The parser subsystem of the Clif interpreter is de-
signed as a regular expression lexical analyzer re-
alized with LEX [11] and LR(1) parser designed
with YACC [2]. The BNF form of grammar (parser
specification) is in appendix A. The parser is con-
structed as one-pass parser and code generator. For
a parsing of various context dependent semantics of
Clif as well as for an object movement optimization
we use various sorts of backward and forward fixing
techniques.

As we have mentioned at the beginning of this sec-
tion there must be a decision about the syntactic
resp. semantic blocks which trigger a run of the vir-
tual machine and the parser. This design decision is
realized with the level 0 and the level_1 grammati-
cal construction (see appendix A). Shortly, we can
say that any left bracket ”{” opens a list of level 1
statements. They are compiled and the code is gen-
erated in the first free area in the main memory.
The occurrence of the last right bracket ”}” which
brings the sentence to the level 0 stops the parsing
and triggers a run of the virtual machine.

4. Conclusions

In the concluding section we comment some fea-
tures of Clif and we discuss a possible future direc-
tions of the development.

e Because Clif is a multiplatform compiler we
have a well-defined procedure of migration to

different platforms. The interpreter is cur-
rently ported to the following operating sys-
tems and architectures, respectively: UNIX
(CD4680 - EP/IX, DEC5000/240 - Ultrix,
Sun SPARC Station - Solaris, Linux), MS
DOS. We are working on the MS Windows
port.

The remote procedure call slot that we have
built currently into the interpreter supports a
remote procedure call paradigm, where client
(or caller) waits until the finish of the re-
mote procedure. We would like to improve
this mechanism with a possibility of concur-
rent computation and synchronization via in-
ternal mechanism which would allow the in-
terpreter to proceed with a computation even
if the data from the remote call are not at
the disposal. The interpreter runs until there
is no reference to the results of the remote
call and then blocks just before the first such
reference.

We suppose to implement, the following spe-
cial atomary types: integers with arbitrary
precision, matrices with a dynamical alloca-
tion of memory and splines.

To allow a more flexibility in language syntax
we propose a procedure where for each stage
of the compiler development there are two
compilers. One is the active compiler with
a full semantic and the other one is the same
parser but with a special semantic which is di-
rected to a source-source translation towards
a new syntax.

[1]

[2]

[5]

[9]

[10]

[11]

[12]

e We also think about a possibility to conduct
a research towards a compiler with a unified
parser working in a heterogeneous environ-
ment with different code generation parts for
particular environments. We have in mind to
apply the methods used in object program-
ming to solve ”inheritance anomaly” [8] for
this problem. When we look at the parser
constructed with YACC it can be seen that
parsing and code generation parts are inter-
spersed in such a way that it is not possible
to separate and encapsulate those parts from
each other. This is an instance of inheritance
anomaly which can be approached with re-
cently discovered methods.

References

A. V. Aho, S. C. Johnson: LR parsing, Com-
puting Surveys, Vol. 6, No. 2, June 1974, pp.
99-124

A.V. Aho, J. D. Ullman: The Theory of Pars-
ing, Translation, and Compiling, Prentice Hall,
Englewood Cliffs, N.J., Vol. 1, 1972, Vol. 2,
1973

S. Bandyopadhyay, V.S. Begwani, R.B. Mur-
ray: Compiling for the CRISP processor, Pro-
ceedings of the IEEE Spring, COMPCON,
1987, pp. 96-100

A.D. Berenbaum, D.R. Ditzel, H.R. McLellan:
Introduction to the CRISP Instruction Set Ar-
chitecture, Proceedings of the IEEE Spring,
COMPCON, 1987, pp. 86-90

A.D. Berenbaum, D.R. Ditzel, H.R. McLellan:
Architectural Innovations in the CRISP Mi-
croprocessor, Proceedings of the IEEE Spring,
COMPCON, 1987, pp. 91-95

J.J. Dongarra, C.B. Moler, J.R. Bunch, G.W.
Stewart, LINPACK User’'s Guide, SIAM,
Philadelphia, 1979

S. C. Johnson: YACC: Yet Another Compiler
Compiler, Computing Science Technical Re-
port No. 32, Bell Laboratories, Murray Hill,
NJ 07974, 1975, pp. 163-196

D.G. Kafura, R.G. Lavender: Concurrent
Object-Oriented Language and the Inheritance
Anomaly, Proceedings ISIPCALA’93, Prague,
1993, pp. 183-215

L. Korei: The Interpreter Clif, Programmer’s
Guide, Research Report, Slovak Technical Uni-
versity, Faculty of Mech. Eng., Bratislava, 1994
L. Koreni: The Interpreter Clif, Technical
Guide, Research Report, Slovak Technical Uni-
versity, Faculty of Mech. Eng., Bratislava, 1994
M. E. Lesk, E. Schmidt: LEX - A lexical ana-
lyzer generator, Research report, Bell Labora-
tories, Murray Hill, NJ, 1975, pp. 197-210

B. Serpette, J. Vuillemin, J.C. Hervé:
BigNum: A Portable and Efficient Package for

Arbitrary-Precision Arithmetic, Research Re-
port, preprint, INRIA, 1989

A. Syntax of Clif

<list_stat_0 >::= <list_stat_0 ><stat_0 >

lempty

<list_stat >::= <list_stat ><stat_-1 >

lempty

<stat_-0 >::= INT <list_dekl >;

[DOUBLE <list_dekl >;

|[FLOAT <list_dekl >;

|[CHAR <list_dekl >;

|<expr >;

|IF (<expr >) <then >

[WHILE (<expr >) { <list_stat >}
|[FOR for { <list_stat >}

[READ (<l.value >) ;

[WRITE (<lvalue >) ;

[PRINT ;

[EXIT ;

[INT PROC <proc >

[DOUBLE PROC <proc >
|[FLOAT PROC <proc >

|[CHAR PROC <proc >

|[VOID PROC <proc >
[EXPORT_T REMOTE_C INT PROC

<ident >() ;

|[EXPORT.T REMOTE_C DOUBLE PROC

<ident >() ;

[EXPORT_T REMOTE_C FLOAT PROC

<ident >() ;

[EXPORT-T REMOTE_C CHAR PROC

<ident >() ;

[EXPORT_-T REMOTE_C VOID PROC

<ident >() ;

[REMOTE_C INT PROC <ident >() ;
[REMOTE_C DOUBLE PROC <ident >() ;
[REMOTE_C FLOAT PROC <ident >() ;
[REMOTE_C CHAR PROC <ident >() ;
[REMOTE_C VOID PROC <ident >() ;
|CSUSPEND ;

|[RESUME ;

|[LOAD (<file_name >);

l;

<stat_1 >::= <expr >;

|IF (<expr >) <then >
[WHILE (<expr >) { <list_stat >}
|[FOR <for >{ <list_stat >}
|BREAK ;

|CONTINUE ;

[READ (<list_expr >) ;
[WRITE (<list_expr >) ;
|PRINT ;

|EXIT ;

[RETURN (<expr >);
|CSUSPEND ;

|LOAD (filename);

l;

<list_dekl >::= <ident >

|<ident >, <list_dekl >
|<ident ><list.dim >, <list_dekl >

<list_dim >::= <list.dim >[<numberi >]

|[<numberi >] <list_dim >

<then >:= { <list_stat ><or > <list_param >::= <expr >)
|<expr >, <list_param >

<or >u:= } ELSE { <list_stat >}

|} <expr >:= <expr ><operator ><expr >
|<l_value >= <expr >
|— <expr >
<for >::= (<expr >; <expr >; <expr >) |+ <expr >
[(535) |[++4 <l_value >
|—— <lvalue >
[(INT) <expr >
<proc >::= <ident ><procl > |(DOUBLE) <expr >

|(FLOAT) <expr >
|(CHAR) <expr >

<procl >::= (<listform_param >) <proc2 > |<prim_expr >
|() <proc2 >
(QF:
<prim_expr >::= <identifier >
. |<numberi >
<proc2 >::= { <list_loc_dekl >; <proc3 > |<numberd >
{ <proc3 > |<stringc >
|<numberc >
. |(<expr >)
<proc3 >u= <list_stat >} |<call >

<list_form_param >::= INT <ident >
|INT <ident >, <list_form_param >
|[DOUBLE <ident >
|IDOUBLE <ident >, <list_form_param >
[FLOAT <ident > <identifier >::= <ident >
[FLOAT <ident >, <list_form_param > |<identifier >[<expr >]
|CHAR <ident >
|CHAR <ident >, <list_form_param >
IINT <ident ><listloc-dim > <operator >::= any character from the set:
|INT <ident ><listloc_dim >, [+ =/ \h <>k &k ==<=>= 1= % << >>7!
<list_form_param >
IDOUBLE <ident ><listloc_dim >
|[DOUBLE <ident ><list_loc_dim >,
<list_form_param >
|[FLOAT <ident ><list_loc_dim >
|[FLOAT <ident ><list_loc_dim >,
<list_form_param >
|CHAR <ident ><list_loc_dim > <numberc >::= any single character
|[CHAR <ident ><list_loc_dim >,
<list_form_param >

<l_value >::= <identifier >

<numberi >::= <number >
|[numberi ><number >

<numberd >::= <numberi >. <numberi >
|. <numberi >
<list_loc_.dim >::=[] |<numberi >.
|[<numberi >]
|<list_loc_.dim >[<numberi >]

<number >::= digit from the set: 0,1,2,3,4,5,6,7,8,9

<list_loc_dekl >::= TDENT

[IDENT , <listloc_dekl > .
<stringc >::= Sequence one or more characters, first

character is a letter followed by letters or digits

<dekl >::= INT <list_loc_dekl_1 >;
|IDOUBLE <list_loc_dekl_1 >;

|[FLOAT <list_loc_dekl_1 >; <ident >::= Sequence one or more characters, first

|CHAR <list_loc_dekl_1 >; character is a letter followed by letters or digits
<list-loc_dekl-1 >::= <ident > The statement LOAD(file_name); is only processed by lexi-

|<%dent >, <.11st_.10c_dekl_1 > cal analyzer - yylex which opens file file_name and redirects

|<ident ><list_dim > input to the input from that file.

|<ident ><list_dim >, <list_loc_dekl_1 >

<call >u= <ident >(<calll > B. Syntax of the graphical subsystem
language
<calll >::= <list_param >) <list_stat_0 >:= <list_stat_0 ><stat_0 >
) lempty

<stat_0 >:= FIELDS = <numberi >
ITYPE = <string >
[PRINT_FORMAT = <string >
|[ON_LEAVE_WINDOW = <string >
[IDIRECTION = <string >
[START_TIME = <s_time >
[DURATION_TIME = <d_time >
[W_RESOLUTION = <numberi >
<numberi >
[LOWER (<numberi >) = <numberd >
|[UPPER (<numberi >) = <numberd >
[STYLE (<numberi >) = <numberi >

<d_time >::= <numberd >
|[AUTOMATIC

<s_time >::= <numberd >
|[AUTOMATIC

<numberi >::= <number >
|[numberi ><number >

<numberd >::= <numberi >. <numberi >
|. <numberi >
|<numberi >.

<number >::= digit from the set: 0,1,2,3,4,5,6,7,8,9

C. Instruction set of the Clif virtual
machine

Notation:

ADR- address of the memory cell

ADR_STACK- the address stack register

AST- the arithmetic stack register

BP- the base pointer, it is used in relative address mode

T M P- the temporary stack register, it is used in addressing
of temporary variables

T M P H- the temporary stack register, it is used in resetting
of the temporary stack

NU M- offset in address or value

STRING- a string

ST ACK- the stack register

FRAME- the stack register used in parameter passing to
the intrinsic functions

[z]- a value to which x points to

<integer >- an integer number

<double >- a double precision floating point number

< float >- a single precision floating point number

<char >- a byte

Instructions have a variable length. The structure of the in-
structions is the following: major, minor, immediately. Im-
mediately can be either address or value. In the following
table is the summary of instruction types.

[type | parameters [size |
OP_0_ma major 1
OP_0_mi major 2

minor
OP_1_ma major 2

address
OP_1_mi major 3

minor

address
OP_1.1 major 3

minor

value

C.1. Address instructions and instructions on the
arithmetic stack

Instruction MOV.

Description: move data from the specified address to another
specified address.

Options:

[ADR] «+— [[AST]] type OP_1_mi

[BP + NUM] «— [[AST]] type OP_1i

[[BP + NUM]] +— [[AST]] type OP_1.i

[ADR + [[AST — 1]]] <— [[AST]] type OP_1_mi

[BP + NUM + [[AST — 1]]] +— [[AST]] type OP_l.
[[BP + NUM + [[AST — 1]]]] +— [[AST]] type OP_1.i

The instructions are specific for each data type. We mean
that the each instruction option represents a class of instruc-
tions. The instructions in each class differ by minor. For
example the very first option is specific for type of operand
double, float, integer, char.

BP +— STACK type OP_0_mi
STACK <— BP type OP_0_mi
TMPH «— TMP type OP_0_mi

FRAME <— STACK type OP_0_mi

Instruction PUSHA
Description: PUSH in to the arithmetic stack.
Options:

[AST] «— [ADR] type OP_1_mi

[AST] «— [BP + NUM] type OP_1_i

[AST] «— [[BP + NUM]] type OP_1i

[AST] «— [[ADR+[[AST — 1]]] type OP_Li

[AST) «+— [BP + NUM + [[AST —1]]] type OP_1.i
[AST] «— [[BP + NUM + [[AST — 1]]]] type OP_1.i

The instructions are specific for each data type.

Instruction PUSHAL

Description: push onto the arithmetic stack immediately
Options:

[[AST]] +— NUM type OP_1_i

The instruction is specific for each data type.

[[AST]] «— STRING type OP_1_mi

Instruction POPA.
Description: POP from the arithmetic stack.
Options:

The arithmetic stack is cleared. type OP_1_mi

C.1.1 Arithmetic-logical instructions: Ad-
dress of the result is placed on the top of the arithmetic stack.
Evaluation is placed into the temporary stack. Arithmetic-
logical instructions are specific for each data type, if it is not
stated otherwise in description of an instruction.
Instruction ADD.

Description: perform arithmetic addition.
Options:

[[AST — 1]] «+— [[AST]] + [[AST —1]] type OP_0_mi
Instruction SUB.

Description: perform arithmetic subtraction on the top of
arithmetic stack or from stack pointer. On the stack can be
only processed an instruction mentioned below (from stack
pointer can be only subtracted an integer number).
Options:

[[AST — 1]] +— [[AST — 1]] — [[ASTY]
STACK «— (STACK — NUM)

type OP_0_mi
type OP_1.i

Instruction MULT.

Description: perform arithmetic multiplication.
Options:

[[AST — 1]] «— [[AST]] * [[AST — 1]] type OP_0_mi
Instruction MOD.

Description: perform arithmetic modulo operation on inte-
gers.

Options:

[[AST — 1]] «+— [[AST — 1]|%[[AST]] type OP_0_ma
Instruction DIV.

Description: perform arithmetic division.

Options:

[[AST — 1]] «— [[AST — 1]]/[[AST]] type OP_0_mi

Instruction OR.
Description: perform logical inclusive OR.
Options:

[[AST —1]] «— [[AST —1]] || [[AST]] type OP_0_mi
Instruction AND.

Description: perform logical AND.

Options:

[[AST — 1]] +— [[AST — 1]|&&[[AST]] type OP_0_mi

Instruction ORB.

Description: perform bitwise OR of integers.
Options:

[[AST —1]] «+— [[AST —1]] | [[AST]] type OP_0_ma
Instruction ANDB.

Description: perform bitwise AND of integers.

Options:

[[AST —1]] «— [[AST — 1]]&[[AST]] type OP_0_ma
Instruction EQ.

Description: perform logical test for equality.
Options:

[[AST —1]] «+— [[AST — 1]] == [[AST]] type OP_0_mi
Instruction GR.

Description: perform logical test for greater than.

Options:

[[AST — 1]] «— [[AST —1]] > [[AST]] type OP_0_mi
Instruction LO.

Description: perform logical test for lower than.

Options:

[[AST — 1]] «— [[AST — 1]] < [[AST]] type OP_0_mi
Instruction LE.

Description: perform logical test for lower or equal.
Options:

[[AST — 1]] +— [[AST — 1]] <= [[AST]] type OP_0_mi
Instruction GE.

Description: perform logical test for greater or equal.
Options:

[[AST — 1]] +— [[AST — 1]] >= [[AST]] type OP_0_mi
Instruction NE.

Description: perform logical test for non equal.

Options:

[[AST — 1]] «+— [[AST — 1]]! = [[AST]] type OP_0_mi
Instruction NEG.

Description: perform logical negation.

Options:

[[AST]] «—! [[AST]] type OP_0_mi

Instruction NOT.

Description: perform one’s complement operation of inte-
gers.

Options:

[[AST]] «—" [[AST]] OP_0_ma

Instruction SAL.

Description: perform arithmetic left shift of integers.
Options:

[[AST — 1]] +— [[AST — 1]] << [[AST]] OP_0_ma

Instruction SAR.

Description: perform arithmetic right shift of integers.
Options:

[[AST — 1]] +— [[AST — 1]] >> [[AST]] OP_0_ma
Instruction XOR.

Description: perform logical exclusive OR of two integers.
Options:

[[AST — 1] «— [[AST —1]] ~ [[AST]] OP.0_ma

C.1.2 Integer and floating point instructions:
Instruction CVT.
Description: Convert a signed quantity to a different signed
data type.
Options:
<integer >— <double >
<double >— <integer >
<integer >— < float >
< float >— <integer >
< float >— <double >
<double >— < float >
<char >— <integer >
<integer >— <char >
<double >— <char >
<char >— <double >
<char >— < float >
< float >— <char >
<wvoid >— <integer >
<woid >— <double >
<wvoid >— <float >
<woid >— <char >
The conversion to the wider type (more bits) can be executed
either on the top of the arithmetical stack or one operand
under the top of the arithmetical stack. Above instructions
are of the type OP_0_mi.

C.2. Stack instructions

Instruction PUSH.

Description: Push value onto the stack.
Options:
[STACK]«+— BP type OP_0_mi

[STACK]+— TMPH type OP_0_mi
Instruction POP.

Description: Pop value from the top of the stack.
Options:

BP «+— [STACK] type OP_0_mi

TMPH < [STACK] type OP_0_mi

C.3. Address stack instruction

Instruction PUSHAD.

Description: PUSH address into the address stack.
Options:

[ADR_STACK] «— [AST] type OP_0_ma
Instruction POPAD.

Description: POP address from the address stack.
Options:

[STACK)] +— [ADR.STACK] type OP_0_ma

C.4. Temporary stack instructions

Instruction CLRT.
Description: Clear temporary stack.
Options:

TMP +— TMPH type OP_0_ma

C.5. Input and output instructions

Instruction IN.

Description: input of the value into address; the address is
specified absolutely or relatively.

Options:

IN[ADR] type OP_1_mi

IN[BP + NUM] type OP_1.i

IN[[BP + NUM]] type OP_1.i

IN[ADR + [[AST —1]]] type OP_1_mi

IN[BP + NUM + [[AST —1]]] type OP_1.i

IN[[BP + NUM + [[AST — 1]]]] type OP_1.i

Instruction OUT.
Description: output of the content of the address; the ad-
dress is specified absolutely or relatively.

Options:
OUT[ADR] type OP_1_mi
OUT[BP + NUM] type OP_li

[
OUT[[BP+ NUM]| type OP_1i

OUT[ADR+ [[AST —1]]] type OP_1_mi
OUT[BP + NUM + [[AST —1]]] type OP_L_i
OUT([[BP + NUM + [[AST —1]]]] type OP_1i

Instruction MESS.
Description: put string message to the standard output.
Options: type OP_1_ma

C.6. Control instructions

Instruction STOP.
Description: signalization of end of the virtual machine run.
Options: type OP_0_ma

Instruction INTER.
Description: indicating of synchronous interrupt.
Options: type OP_0_ma

Instruction IRET.

Description: return from synchronous or asynchronous in-
terrupt.

Options: type OP_0_ma

Instruction JMP.
Description: jump to the address.
Options: type OP_1_ma

Instruction JZ.

Description: If last operation is equal zero, jump to the ad-
dress.

Options: type OP_1_ma

Instruction JNZ.

Description: If last operation is not equal zero, jump to the
address.

Options: type OP_1_ma

Instruction HALT.
Description: system halt.
Options: type OP_0_ma

Instruction CALL.

Description: call of a function. The function can be either
user supplied one or intrinsic one.

Options: type OP_1_ma

Instruction RET.
Description: return from a function.
Options: type OP_0_ma

